658 research outputs found

    Computing with Memristor-based Nonlinear Oscillators

    Get PDF
    Among the recent disruptive technologies, volatile/nonvolatile memory-resistor (memristor) has attracted the researchers' attention as a fundamental computation element. It has been experimentally shown that memristive elements can emulate synaptic dynamics and are even capable of supporting spike timing dependent plasticity (STDP), an important adaptation rule for neuromorphic computing systems. The overall goal of this work is to provide an unconventional computing platform exploiting memristor-based nonlinear oscillators described by means of phase deviation equations. Experimental results show that the approach significantly outperforms conventional architectures used for pattern recognition tasks

    Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy

    Full text link
    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic protons (EpNN > 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter

    Solving the large discrepancy between inclusive and exclusive measurements of the 8Li+4He11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at astrophysical energies

    Full text link
    A solution of the large discrepancy existing between inclusive and exclusive measurements of the 8Li+4He11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n reaction cross section at Ecm<3E_{cm} <3 MeV is evaluated. This problem has profound astrophysical relevance for this reaction is of great interest in Big-Bang and r-process nucleosynthesis. By means of a novel technique, a comprehensive study of all existing 8Li+4He11B+n{}^8{\rm Li}+{}^4{\rm He}\to{}^{11}{\rm B}+n cross section data is carried out, setting up a consistent picture in which all the inclusive measurements provide the reliable value of the cross section. New unambiguous signatures of the strong branch pattern non-uniformities, near the threshold of higher 11B{}^{11}{\rm B} excited levels, are presented and their possible origin, in terms of the cluster structure of the involved excited states of 11B{}^{11}{\rm B} and 12B{}^{12}{\rm B} nuclei, is discussed.Comment: 5 pages, 4 figures, 1 tabl

    Prompt dipole radiation in fusion reactions

    Get PDF
    The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics

    Correlations in Nuclear Arrhenius-Type Plots

    Full text link
    Arrhenius-type plots for multifragmentation process, defined as the transverse energy dependence of the single-fragment emission-probability, -ln(p_{b}) vs 1/sqrt(E_{t}), have been studied by examining the relationship of the parameters p_{b} and E_{t} to the intermediate-mass fragment multiplicity . The linearity of these plots reflects the correlation of the fragment multiplicity with the transverse energy. These plots may not provide thermal scaling information about fragment production as previously suggested.Comment: 12 pages, Latex, 3 Postscript figures include

    Calculation of territorial risks in the explosion of transformers at the electrical substation

    Get PDF
    Работа направлена на анализ причин выхода из строя трансформаторов, расчет рисков при взрыве трансформаторов на электрической станции, что позволяет сформулировать мероприятия по повышению безопасности ее работы. The work is aimed at analyzing the causes of failure of transformers, calculating risks in the explosion of transformers at a power plant, which allows us to formulate measures to improve the safety of its work

    Upgrade of the experimental Facilities at LNS

    Get PDF
    A feasibility study to build an helical orbit spectrometer using the SOLE magnetic field is presented in the more general context of the upgrade project of the LNS facilities. It includes the upgrade of the superconducting cyclotron to deliver high-intensity beams and the design of a new fragment separator optimized to match the beam optics of the secondary beams produced by projectile fragmentation. The main features of a helical-orbit spectrometer together with simulations performed using the SOLE magnetic field are presented and compared to the results obtained using a homogeneous solenoid field. The effects related to the geometry of the detection array and to the beam spot size on the detected impact point distribution and on the recostruction of the emission angle are also discussed

    Stabilization of linear carbon structures in a solid Ag nanoparticle assembly

    Full text link
    Linear sp carbon nanostructures are gathering interest for the physical properties of one-dimensional (1D) systems. At present, the main obstacle to the synthesis and study of these systems is their instability. Here we present a simple method to obtain a solid system where linear sp chains (i.e. polyynes) in a silver nanoparticle assembly display a long term stability at ambient conditions. The presence and the behavior of linear carbon is investigated by Surface Enhanced Raman Scattering (SERS) exploiting the plasmon resonance of the silver nanoparticles assembly. This model system opens the possibility to investigate an intriguing form of carbon nanostructures
    corecore